ISEG - Quantitative Finance Formulae

Quantitative Finance Formulas

Interest accumulation: Fv = Pv + I

Simple interest: $Fv = Pv (1 + i \cdot t)$

Compound interest: $Fv = Pv (1 + i)^{t}$

Simple discount: D = Fv·d·t

I=Interest; P=Principal; i=interest rate

t=number of periods

Effective rates conversion:

$$i_L = (1 + i_S)^{L/S} - 1$$
; $i_S = (1 + i_L)^{S/L} - 1$

Relation between nominal and effective rates:

$$i_A(m) = m[(1 + i_A)^{1/m} - 1]$$

Continuous compounding:

Nominal rate: $\delta = \ln (1 + i_A)$

Future Value: S=Pe^{5t}

Present Value: P=Se-6t

Present value of a n payment annuity immediate of

1 per period:
$$a_{\bar{n}|i} = \frac{1-(1+i)^{-n}}{i}$$

Accumulated value of a n payment annuity immediate of 1 per period:

$$s_{\bar{n}|i} = \frac{(1+i)^n-1}{i} = a_{\bar{n}|i}(1+i)^n$$

Present value of annuity due:

$$\ddot{a}_{\bar{n}|i} = 1 + a_{\bar{n}-1|i} = a_{\bar{n}|i}(1+i)$$

Accumulated value of annuity due:

$$\ddot{s}_{\bar{n}|i} = s_{\bar{n}|i}(1+i)$$

Present value of deferred annuity:

$$a_{\bar{n}|i} = a_{\bar{n}|i}(1+i)^{-k}$$

Accumulated value of deferred annuity:

$$k|S_{\tilde{n}|\tilde{l}} = S_{\tilde{n}|\tilde{l}}$$

Forborne annuities

p- number of intervals between the last payment and FV.

Present value of perpetuity immediate: $a_{\infty|i} = \frac{1}{i}$

Increasing arithmetic progression:

$$(C-h)a_{\bar{n}|i} + h(Ia)_{\bar{n}|i}; \qquad (Ia)_{\bar{n}|i} = \frac{\bar{a}_{\bar{n}|i} - n(1+i)^{-n}}{i}$$

Decreasing arithmetic progression:

$$(D-h)\alpha_{\tilde{n}|i} + h(D\alpha)_{\tilde{n}|i}; \quad (D\alpha)_{\tilde{n}|i} = \frac{n-\alpha_{\tilde{n}|i}}{i}$$

Geometric progression: $C \frac{1-r^n(1+i)^{-n}}{1+i-r}$

M^{thly} payable annuity:

$$a_{\bar{n}|i}^{(m)} = a_{\bar{n}|i} \frac{i}{i(m)}; \ s_{\bar{n}|i}^{(m)} = s_{\bar{n}|i} \frac{i}{i(m)}$$

Leasing:

Lease payment=PMT + I

Pv=PMT $a_{\tilde{n}|i}$, I=RV · i

Leasing (for an annuity immediate):

$$Vc = E + Ra_{Hi} + RV(1+i)^{-n}$$
, where

Vc: value of the contract; E: entry value

RV = residual value; PMT = periodic payment

Linear Interpolation:

Rn - unknown rate R1 and R2 - two known